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Abstract

It is commonly believed that there exists a strong negative association be-

tween corporate social performance (CSP) and firm risk. To investigate the

structure of this relationship, we decompose the dynamics of large U.S. com-

pany stock returns into two components: Gaussian and non-Gaussian inno-

vations. Our findings indicate that CSP has positive association with firm’s

risk through the non-Gaussian risk channel. In particular, it significantly re-

duces the frequency and the magnitude of extreme returns. However, when

examining the effect of CSP on standard Gaussian volatility risk, we find

that it is not statistically significant.
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1. Introduction

The COVID 19 outbreak as well as the recent Ukraine-Russia war has

reminded investors of the recurrence of market crashes. Conventional wis-

dom supports the idea that investing into firms with strong corporate social

performance (CSP) helps navigate through market turbulences by delivering

better performance than less socially performing firms as supported by Lins

et al. (2017). In the same spirit, Mishra and Modi (2013) show that pos-

itive corporate social responsibility (CSR) reduces firms’ idiosyncratic risk

while negative CSR increases it. This negative association between CSR

and idiosyncratic risk tends to dissipate for highly leveraged firms. Andreou

et al. (2012) find that firms with strong governance display less idiosyncratic

stock price crash risk and that this effect is even more prevailing for firms

operating in less competitive industries and subject to more return uncer-

tainty. The rational for trying to relate CSP to crash risk can be justified

by two concurrent effects: for undervalued firms, managers are less inclined

to report inflated earning and more willing to allocate their CSR resources

prudently as in Sawicki and Shrestha (2014), while overvalued firms tend to

increase their CSR effort to dissimulate their tendency to hide bad news as

in Chi and Gupta (2009). Conversely, Wang et al. (2021) find that banks

who exhibit strong social activity tend to increase their stock prices crash

risk. This effect can be explained by their desire to divert shareholders’ at-

tention from managers’ misbehaviour. Nofsinger and Varma (2014) show

that socially responsible mutual funds tend to outperform conventional ones
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during times of market turbulences and under-perform under normal con-

ditions. Hence, socially responsible investments seem to provide a natural

hedge against downside risk. Shiu and Yang (2017) show that CSR activities

provide some insurance firm’s stock and bond prices benefit from CSR activ-

ities through insurance-like effects while Jia et al. (2020) find that stock price

risk pushes managers to intensify their CSR effort as a risk mitigation device.

Kim et al. (2014) demonstrate the mitigating effect of CSR performance on

crash risk and that this effect is more pronounced for firms with a low level of

corporate governance and institutional ownership. Dumitrescu and Zakriya

(2021) analyze what components of CSR affects the most stock price crash

risk and find that mostly the social component of CSR mitigates crash risks

while the governance and environmental only have marginal effects. The

impact of CSR performance on stock price crash risk can also be analyzed

through the lens of ESG sentiment as in Yu et al. (2023) who establish a

negative relationship between ESG (Environmental, Social and Governance)

news sentiment and crash risk. This effect is even more prominent for firms

with low analyst coverage.

When it comes to measuring crash risk, Kim et al. (2014) uses two measures,

namely the negative conditional skewness of the previous fiscal year and the

down-to-up volatility ratio. Dumitrescu and Zakriya (2021) measure crashes

through two other different measures that are both related to the number of

times returns falls 3.09 standard deviations below their means. Our approach

differs in two aspects as we do not consider only downside risk but rather
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take into account extreme returns both on the upside and the downside.

Indeed, while it is clear that investors are known for being crash-averse as

pointed out by Weigert (2016), Chabi-Yo et al. (2018) and Ouzan (2020) risk

averse investors do not only dislike crashes in particular but also dislike un-

certainty in general. Hence, rational investors will aim at building portfolios

that reduce their exposure to volatility during normal market conditions and

to extreme movements during very volatile markets. Practical intuition to

explain these investors’ preferences can be found in Martin (2013) who show

that risk-averse agents typically like odd order cumulants such as mean and

skewness and dislike even order cumulants such as volatility and kurtosis.

Hence, stock return risk cannot be reduced to volatility and should capture

higher order moments. Our analysis focuses on the impact of CSP on stock

extreme movements as well as standard Gaussian volatility. To this aim we

use a parametric structural model to capture the dynamics of stock returns

while accounting for both the frequency and magnitude of extreme returns,

namely booms and crashes. Secondly, we are able to separate risk into a pure

volatility component, through Gaussian innovations which capture moderate

aspects of stock risk and a non-Gaussian component that measures the risk

of extreme returns, accounting for both booms and crash manifestations of

stock returns. Our measure of tail risk borrows from the extent asset pricing

literature. Indeed, Kelly and Jiang (2014), Barro and Jin (2011) and Gabaix

(2009), to pick a few, use the power law distribution to model the left tail

of asset returns. By contrast, we use this type of distribution to model both
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the crash and boom aspects of stock return dynamics. Hence, in our model,

stock price risk stems from two sources: Gaussian risk and jump risk. By

applying our risk decomposition to SP 500 firms, we cast a new perspective

on the nexus between CSP and firm risk. Firstly, we find that CSP mainly

affects stock price risk by decreasing the likelihood and magnitude of extreme

returns, both booms and crashes. Surprisingly, we find no statistically signif-

icant relation between CSP and standard Gaussian volatility. Furthermore,

we generalize the strand of literature that focuses on the impact of CSP on

crash risk and show that CSP not only reduces the risk of stock price crashes

but also diminishes the likelihood of extreme upside moves.

The next section specifies our parametric approach used to model stock re-

turn dynamics. Section 3 describes the moment matching procedure being

used to estimate the parameters of our fat-tailed model for stock returns.

Section 4 analyzes the impact of CSR on our various measures of firm’s risk.

The last section concludes.

2. Stock return dynamics

To model the tail behavior of stock returns we assume that the latter are

driven by both Gaussian and non-Gaussian innovations as follows:

ri,t+1 = µ+ ut+1 + vt+1 (1)

ut+1 ∼ N (0, σ2)
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vt+1=


0 with probability 1− pd − pu

−vd,t+1 with probability pd

vu,t+1 with probability pu

where rt+1 represents the daily log return for a given stock and both pro-

cesses vd, vu are respectively crash and boom processes that are distributed

exponentially:

vd,t+1 ∼ exp(αd)

vu,t+1 ∼ exp(αu)

Effectively, stock return rt+1 is a combination of a constant growth rate

µ, a Gaussian innovation ut+1 and a non-Gaussian jump process vt+1 that

can be positive with probability pu or negative with probability pd. This

jump process is idle most of the time with a probability 1− pd − pu. When

this process becomes active, the magnitude of the non-Gaussian process is

exponentially distributed with tail exponent αd if a crash occurs and αu

otherwise. When both these exponents are +∞ or when the probability of

crash/boom occurrence are 0 the jump process becomes idle and the stock

return turns out to be Gaussian.

Conversely, the lower the tail exponents αu, αd the more severe the boom

(respectively the crash) may be, should it occur. These dynamics are akin

to the model used Abdelaziz and Chibane (2023) for general assets and in

Chibane and Kuhanathan (2023) for inflation break-evens. Note that the
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non-Gaussian innovation v does not distinguish between a systemic and an

idiosyncratic shock. Indeed, here we are not concerned with the correlation

of extreme movement between various assets but how CSR intensity impacts

stock return tail distribution on a company per company basis.

3. Data and estimation

3.1. Fat-tailed model estimation methodology

We define the set of model parameters we wish to estimate as:

θ = (µ, σ, pu, pd, αu, αd) (2)

which leaves 6 parameters to determine.

Given our set of historical data for the stock returns denoted by (rt+1)1≤i≤N,0≤t≤T ,

we first compute its empirical moment generating function (MGF) defined

by:

M̂GF k =
1

T

T∑
t=0

ekrt+1

Furthermore, we show in Appendix A that within the fat-tailed model,

the stock return’s MGF is obtained analytically as a function of model pa-

rameters:

MGFk = ekµ+
1
2
k2σ

2

(
1− pd − pu + pd

αd

αd + k
+ pu

αu

αu − k

)
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The estimation procedure consists, for a given set of historical returns, in

trying to match moment orders as high as possible so as to reach maximum

precision (in practice we go up to order 6). Consequently, using this histori-

cal return data, our estimation procedure solves the following minimization

program:

θ̂ = argmin
θ

J (θ)

s.t

0 ≤ pd, pu ≤ 1

αu, αd > 0

where:

J (θ) =
6∑

k=1

(
M̂GF k −MGFk (θ)

)2

We perform our estimation on the constituents of the S&P 500 stock

prices for which we extract daily data. We execute this estimation proce-

dure for each stock on a rolling basis, using an estimation window of 2 years

where the first set of daily returns spans the period [01-01-2015,30-12-2016].

Hence, the first model estimation is performed as of 02-01-2017. We then

move the estimation window by one day and repeat the same procedure for
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each stock until the end of the sample. We therefore obtained the model pa-

rameters µ, σ, pu, pd, αu, αd for 1597 consecutive business days. To get some

intuition about the cross-sectional distribution of the fat-tailed parameters

pu, pd, αu, αd we display in Table 1 the summary statistics of these parame-

ters’ cross-sectional distribution for four different dates corresponding to the

first estimation date (January 2017), the pre-COVID 19 period (end of De-

cember 2019), the post-COVID 19 period (end December 2020) and the end

of the full sample (February 2023). We observe that over the pre-COVID

19 period, parameters are rather stable with returns boom probability close

to 3.9%, a crash probability close to 2.9%, both showing low standard de-

viation of less than 0.6% among all stocks. However, after the outbreak of

the COVID 19, the average of the boom probability across all stocks seem

to increase substantially to 4.4% while the standard deviation decreases. In-

terestingly this effect dissipates a little bit at the end of the sample with

a boom probability decreasing slightly to 4.2% and a standard deviation of

0.5%. Surprisingly, the advent of the Ukraine-Russia was does not seem to

affect the boom probability significantly. Turning our attention to the crash

probability, there seems to be no effect coming from neither the COVID-19

outbreak nor Ukraine-Russia tensions since pd stays around 2.9% on all obser-

vation dates. We now set our attention to the boom and crash intensities. We

observe that parameters αu, αd are fairly stable on the pre-COVID 19 periods

and that booms are less pronounced than crashes with respective mean in-

tensity parameters of 31.1 and 22.5 over the pre-COVID 19 with period with
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respective standard deviations of 6 and 5.5 approximately. However, post-

COVID 19 the two parameters drop substantially to 22.6 and 15 respectively,

indicating a higher propensity for extreme returns in the post-COVID period.

This phenomenon dissipates a little bit towards the end of the sample with

αu, αd increasing respectively to 19.5 and 27.5 in February 2023. To better

understand how the fat-tailed model parameters change across the different

segments of companies considered we plotted in Figure 1 the cross-sectional

probability density function of crash and boom parameters. We can see that

while the crash probability is largely unchanged along the cross-section, the

pattern is rather different for the boom probability. Indeed, for stocks which

exhibit a low boom probability pu in 2017, this probability becomes even

lower after the outbreak of the COVID-19 outbreak while those who had a

high boom probability see this probability increase after the crisis. Looking

at the intensity parameters αu, αd we find they both behave similarly: stocks

exhibiting low parameter are more frequent and those exhibiting a higher

intensity parameter are less frequent, thus indicating that if rare extreme re-

turns occur, they are likely to be more substantial than prior to the COVID

19 outbreak.
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Panel A. Boom probability cross-sectional summary statistics

Mean (%) Std (%) Skewness Kurtosis

January 2017 3.877 0.571 0.215 1.851

December 2019 3.970 0.586 −0.096 1.988

December 2020 4.360 0.407 −0.370 2.393

February 2023 4.189 0.495 −0.489 2.649

Panel B. Crash probability cross-sectional summary statistics

Mean (%) Std (%) Skewness Kurtosis

January 2017 2.817 0.550 0.596 2.447

December 2019 2.930 0.604 0.272 2.350

December 2020 2.932 0.802 0.644 1.921

February 2023 2.918 0.682 0.333 1.723

Panel C. Boom intensity cross-sectional summary statistics

Mean (%) Std (%) Skewness Kurtosis

January 2017 31.185 6.075 −0.398 2.987

December 2019 31.114 5.720 −0.258 3.152

December 2020 22.228 4.194 −0.178 3.104

February 2023 27.488 5.350 −0.148 2.421

Panel D. Crash intensity cross-sectional summary statistics

Mean (%) Std (%) Skewness Kurtosis

January 2017 22.609 5.542 −0.977 3.166

December 2019 22.546 5.341 −0.938 3.209

December 2020 15.021 5.304 0.227 1.923

February 2023 19.457 5.837 −0.442 1.918

Table 1: Fat-tailed model parameter cross-sectional summary statistics

This table displays the summary statistics for the fat-tailed return model parameter across all stocks and

for different dates, respectively the beginning January 2019, the end of December 2019 (Pre-COVID 19)

and December 2020 (Post-COVID 19), as well as the last sample date. Panel A, B, C, and D present

the results respectively for the return boom probability pu, the crash probability pd, the boom intensity

parameter αu and the crash intensity parameter αd.
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Figure 1: Fat-tailed model parameter distribution

These graphs show the cross sectional probability density function of the fat-tailed model parameters

obtained by kernel smoothing for different dates, respectively the beginning of January 2019, the end of

December 2019 (Pre-COVID 19) and December 2020 (Post-COVID 19), as well as the last sample date.
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4. Relation between corporate social performance and extreme

stock returns for the S&P500

4.1. Empirical model

To investigate the impact of CSP on the probability of crash and boom

of S&P 500 stocks, we proxy CSP for each firm by their ESG ratings. ESG

ratings are numerical scores ranging from 0 to 100. We then perform the

following regressions:

Xt = β0 + β1ESGt + β2Returnt,+β3SigmaRVt + β4Sizet

+β5Leveraget + β6PtBt + β7RoAt

+Firm+ Y ear + ϵt

(3)

where variable Xt represents the value at time t of one the fat-tailed

model parameters µ, σ, pu, pd, αu, αd. The regressions are done independently

for each of the dependent variables.

All of our variables are extracted from Bloomberg. Our main variable

ESGt is the ESG rating from S&P. The scores are based on about 1000

data points for each firm and on over 130 question-level scores. The earliest

ratings were issued in September 2016 and our daily data set ranges from

September 2016 to February 2023. Here t, is the date at which the ESG

rating is released or updated by S&P. Our control variables in Equation 3

are consistent with existing literature (Chen et al. (2001), Kim et al. (2011)).

Returnt is the mean of firm-specific weekly returns for the year preceding
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the ESG rating, SigmaRVt is the mean of firm-specific standard deviation of

weekly returns for the year preceding the ESG rating (i.e. realized volatility).

Sizet is the natural logarithm of market capitalisation at the time of the

rating, Leveraget is the debt-to-asset ratio, PtBt is the price-to-book ratio

at the time of the rating and RoAt is the net profit divided by total assets

as known at the time of the ESG rating. Furthermore, we control for firm

and year effects.

4.2. Data & Baseline regressions

Table 2 offers a detailed statistical analysis of our main variables. The

dataset comprises 2324 distinct observations of firm-ratings. Unsurprisingly,

the ESG ratings, a key variable in our analysis, exhibits a mean value close

to the mid-range score of 50, specifically at 52.17 for our sample. The rel-

atively high standard deviation of 27 points in this measure, also points to

notable disparities in the CSP across the sample. This substantial variation

suggests that the firms in our sample exhibit a wide spectrum of approaches

towards ESG issues, with some firms demonstrating superior commitment

and efficacy in addressing these critical concerns. In the following sections,

we will examine the potential relationships between stock extreme event risk

and CSP.
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N mean sd min p25 p50 p75 max

Size 2324 10.401 1.069 5.377 9.596 10.21 10.977 14.784

ESG 2324 52.166 27.005 0.0 30.0 53.0 76.0 100.0

RoA 2324 6.908 7.494 -31.366 2.278 5.631 10.619 52.368

Price-to-Book 2324 16.925 90.339 0.247 2.127 4.006 8.086 1713.086

Leverage 2324 31.459 19.988 0.0 18.801 31.032 42.169 233.654

Return 2324 0.004 0.005 -0.013 0.001 0.004 0.006 0.046

SigmaRV 2324 0.016 0.007 0.003 0.011 0.014 0.019 0.058

Table 2: Explanatory variables summary statistics

This table displays the summary statistics for the main regression explanatory variables. N is the number

of unique firm-rating observation, mean is the mean of each series, sd is the standard deviation, min, p25,

p50, p75 and max are the minimum, the 1st quartile, the 2nd quartile, the 3rd quartile and the maximum,

respectively.

Table 3 lays out the primary results derived from Equation 3. These main

findings corroborate the significant influence of ESG ratings on pu, pd, αu,

and αd. The coefficients for both pu and pd are significant at the 5% threshold

and negative. This implies that a reduction in both boom and crash risks

is associated with higher ESG scores. However, it is worth noting that the

coefficient for pd is higher, suggesting that an elevated ESG score primarily

mitigates the risk of a crash rather more than it reduces the probability of a

boom.

Moreover, the coefficients corresponding to ESG ratings for αu and αd are

both significant (at 5% for αu and 1% for αd) and positive. As a larger
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α is associated with a less severe jump, our estimate suggests that higher

ESG scores are associated with a diminished severity of potential booms or

crashes. Let us note that the coefficient for αu is marginally greater, pointing

to a slightly stronger effect on the magnitude of potential booms compared

to crashes. However, the difference is less marked than that observed for

boom and crash probabilities, meaning that the effect of ESG scores on the

severity of jumps is somewhat symmetric.
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pu pd αu αd µ σ

(a) (b) (c) (d) (e) (f)

ESG -1.94e-05** -3.216e-05** 0.019* 0.015** -2.687e-06* -8.867e-07

(-2.05) (-2.342) (3.01) (2.03) (-2.99) (-0.30)

Return -0.1741* -0.116* -56.25* 0.79 0.059* 0.071*

(-6.38) (-2.965) (-2.97) (0.03) (15.93) (6.19)

SigmaRV 0.1587* -0.159* -418.01* -353.90* -0.024* 0.405*

(4.04) (-3.057) (-15.07) (-9.49) (-5.74) (23.56)

Size -0.0003 0.003* 0.543** 0.363 0.001* -0.001*

(-0.61) (5.530) (2.22) (1.14) (10.28) (-5.40)

Leverage -3.39e-05*** -2.51e-05 0.019*** 0.012 3.629e-06 -3.042e-06

(-1.93) (-1.018) (1.88) (1.02) (1.64) (-0.47)

PtB 1.48e-06 -2.49e-06 -1.78e-05 -0.002 -1.003e-07 1.169e-06*

(0.79) (-0.739) (-0.02) (-1.51) (-0.65) (2.87)

RoA 2.24e-06 -2.92e-05 0.067* 0.015 1.37e-05* -1.4e-05

(0.08) (-0.773) (3.89) (0.73) (4.11) (-1.52)

Constant 0.043* 0.001 27.68* 20.83* -0.007* 0.011*

(9.39) (0.182) (10.55) (6.15) (-9.01) (6.33)

R² 0.05 0.04 0.19 0.09 0.56 0.56

F (robust) 11.1 10.8 43 16.5 121 102

F test (p-value) 0 0 0 0 0 0

Table 3: Regression estimates

This table displays the coefficients for the main regression. F is the statistical value of the f-test, F test

(p-value) is the significance of the observations. Figures in parenthesis are the t-stats for the respective

coefficients.***, **, * denotes significance at the 10%, 5% and 1% level respectively
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Looking at the regression coefficient for the Gaussian volatility σ, we see

that the ESG coefficient is not significant. Such result - associated with

our estimates on jump probabilities, would tend to suggest that ESG risk

does not have a significant impact on the Gaussian risk associated with a

particular stock but rather on the risk of extreme price movements. This casts

a new perspective on the relation between CSP on risk through two different

aspects. Firstly, we find that their main association is through tail risk

(non-Gaussian) rather than through stock volatility (Gaussian). Secondly,

increased CSP not only diminishes the probability and severity of extreme

negative returns but also diminishes the likelihood and magnitude of extreme

positive returns. Lastly, for µ, we observe in equation (e) that the ESG

coefficient is significant at the 1% level and that it is negative. This would

tend to suggest that higher ESG score reduces returns. This is still an actively

debated issue in research as pointed out in Gillan et al. (2021).

The remaining exogenous variables with a significant coefficient are consistent

with the literature as well as economic intuition. Leverage decreases the

likelihood and magnitude of a boom, with both coefficients being significant

at the 10% threshold. We find no statistically significant effect of leverage on

the probability and severity of a return crash. Indeed, as higher debt reduces

the ability of firms to generate free cash flows to distribute to shareholders,

which can limit upside movements for stock prices. Return-on-asset only has

positive coefficient in (e) : higher return-on-asset from a corporate would be

associated with higher stock return. Price-to-book ratio only has statistically
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significant (and positive) effect on Gaussian volatility, suggesting that a stock

which has a market valuation far above its book value, could be prone to more

volatility.

4.3. Robustness tests

In order to confirm our results, we replace the S&P ESG ratings by those

provided by Refinitiv for S&P 500 stocks, over the same horizon. The results

of this regression are broadly in line with our baseline model. As per Equa-

tions (g) and (h), We still find a significant influence of ESG ratings. The

coefficients for both pu and pd in Equations (i) and (j) are significant and

negative, like in our baseline model. However, we note that the coefficient

for pu is slightly higher, unlike in our baseline model, implying that the effect

of ESG score could be more symmetric than initially estimated.

The coefficients corresponding to ESG ratings for αu and αd are also signif-

icant and positive. Both coefficients are similar here, confirming the sym-

metric impact of ESG scores. We also confirm here that ESG score do not

have a significant impact on σ (see Equation (l)), which tends to confirm our

initial finding : ESG score have no impact on the Gaussian risk profile of

stocks. While in our baseline model, we found a positive relation between

ESG score and µ, in (k) the coefficient is not statistically significant. This

underlines the very uncertain nature of the nexus between ESG score and

stock performance.
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pu pd αu αd µ σ

(g) (h) (i) (j) (k) (l)

ESGRefinitiv -5.622e-05* -4.742e-05* 0.031* 0.032* 1.252e-06 -3.559e-06

(-4.39) (-2.59) (3.28) (2.88) (-1.52) (-0.94)

Return -0.128* -0.022 -79.92* -29.13 0.002* 0.053*

(-5.93) (-0.72) (-4.94) (-1.54) (27.45) (8.24)

SigmaRV 0.213* -0.25* -416.68* -390.51* 0.003* 0.43*

(7.43) (-6.10) (-19.48) (-15.61) (-9.86) (50.4)

Size -0.0001 0.001** 0.57** 0.047 3.096e-05* -0.001*

(-0.44) (2.55) (2.39) (0.17) (18.42) (-8.17)

Leverage -2.254e-05*** -3.696e-05** 0.02** 0.005 1.251e-06 -1.855e-06

(-1.76) (-2.02) (2.17) (0.45) (1.39) (-0.49)

PtB 1.093e-06 2.166e-07 -0.003*** -0.003*** 2.034e-07 1.922e-06*

(0.53) (0.07) (-1.86) (-1.84) (-0.95) (3.12)

RoA -7.637e-06 -6.758e-06 0.049* 0.0191 1.918e-06* -3.012e-06

(-0.39) (-0.24) (3.31) (1.11) (9.51) (-0.52)

Constant 0.043* 0.025* 27.34* 24.40* 0.0003* 0.009*

(12.77) (5.20) (10.95) (8.36) (-15.95) (9.33)

R² 0.05 0.03 0.18 0.11 0.47 0.57

F (robust) 18.6 9.9 79.9 44.3 317.8 470.6

F test (p-value) 0 0 0 0 0 0

Table 4: Regression estimates with Refinitiv ESG scores

This table displays the coefficients for the main regression. F is the statistical value of the f-test, F test

(p-value) is the significance of the observations. Figures in parenthesis are the t-stats for the respective

coefficients.***, **, * denotes significance at the 10%, 5% and 1% level respectively
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5. Conclusion

In this paper, our main objective was to investigate the connection be-

tween CSP and extreme events in stock prices. Specifically, we focused on

analyzing the probabilities of booms and crashes, their magnitudes while ac-

counting for the Gaussian risk profile of stocks returns as well as financial

fundamentals.

Our study identified several key findings: CSP has significant impact on

the likelihood of booms and crashes in stock prices. Indeed, companies with

higher ESG ratings tend to experience a lower probability of extreme events

compared to those with lower ratings. Furthermore, stocks with higher ESG

ratings exhibit smaller magnitudes of booms and crashes when such events do

occur. This suggests that incorporating ESG considerations into investment

decisions can help mitigate the severity of extreme price movements. ESG

ratings provide unique insight that goes beyond traditional risk measures and

financial performance indicators.

These findings highlight the importance of considering ESG factors in in-

vestment decision-making. Incorporating CSP can potentially enhance risk

management strategies and contribute to more stable and sustainable invest-

ment portfolios. Our study makes a contribution to the literature on the link

between CSP and stock performance, by shedding light on the channel by

which CSP impacts the overall stock price risk. It does so by lowering jump

probabilities and magnitude but does seem to significantly impact the Gaus-

sian risk of a stock. These results should lead to reconsidering ESG ratings
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in investment decisions and also contribute to the ongoing policy debates on

the role of ESG factors in financial markets.
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Appendix A. Derivation of the tail process MGF

The MGF of the fat-tailed process can be obtained analytically as follows:

E
[
ekvt+1

]
= (1− pd − pu) e

k×0 + pdE
[
e−k×vd,t+1

]
+ puE

[
ek×vu,t+1

]
For the MGF to be well defined we need:

− k − αd ≤ 0

k − αu ≤ 0

⇔

− αd ≤ k ≤ αu

If this is the case we get:

M (k) = E
[
ekvt+1

]
= (1− pd − pu) + pd

αd

αd + k
+ pu

αu

αu − k

The MGF of the stock return is also given analytically by:
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MGFk = E
[
ekrt+1

]
= E

[
ek(µ+ut+1+vt+1)

]
= ekµE

[
ekut+1

]
E
[
ekvt+1

]
= ekµ+

1
2
k2σ

2

M (k)
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